Effects of zinc on stationary-phase phenotype and macromolecular synthesis accompanying outgrowth of Candida albicans

Author:

Anderson J M,Soll D R

Abstract

When cultures of Candida albicans which had entered stationary phase due to the depletion of zinc (zinc-limiting conditions) were compared with cultures which had entered stationary phase due to the depletion of another growth-limiting component (zinc-excess conditions), at least two cellular characteristics were found to differ: (i) zinc-limited cells appeared more homogeneous and larger on the average than zinc-excess cells, and (ii) zinc-limited cells evaginated on the average of 40 min later than zinc-excess cells. In the present study, it is demonstrated that the distribution of volumes for a stationary-phase culture of zinc-excess cells is skewed towards very small volumes, but even the smallest cells contain nuclei; in contrast, the volumes of zinc-limited cells are evenly distributed around a much larger mean value; the evagination kinetics of zinc-excess cells released into fresh medium are far less synchronous than are those of zinc-limited cells, and the smaller cells in the population take much longer to evaginate than do the larger cells; the onset of net RNA accumulation and achievement of a maximum rate of [3H]uridine incorporation occur significantly earlier in zinc-excess cells than in zinc-limited cells released into fresh medium; and the onset of net protein accumulation and [3H]leucine incorporation occur significantly earlier in zinc-excess cells than in zinc-limited cells released into fresh medium. These results indicate that although zinc-excess cells are extremely heterogeneous in volume, they may still be homogeneously blocked in the nuclear division cycle, and that the later average evagination time of released zinc-limited cells may be due to a delay in the onset of protein synthesis, which in turn may be due to the time necessary to reaccumulate zinc to levels sufficient for the reinitiation of RNA synthesis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3