Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation

Author:

Knudsen E S1,Wang J Y1

Affiliation:

1. Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0322, USA.

Abstract

The growth suppression function of RB is dependent on its protein binding activity. RB contains at least three distinct protein binding functions: (i) the A/B pocket, which binds proteins with the LXCXE motif; (ii) the C pocket, which binds the c-Abl tyrosine kinase; and (iii) the large A/B pocket, which binds the E2F family of transcription factors. Phosphorylation of RB, which is catalyzed by cyclin-dependent protein kinases, inhibits all three protein binding activities. We have previously shown that LXCXE binding is inactivated by the phosphorylation of two threonines (Thr821 and Thr826), while the C pocket is inhibited by the phosphorylation of two serines (Ser807 and Ser811). In this report, we show that the E2F binding activity of RB is inhibited by two sets of phosphorylation sites acting through distinct mechanisms. Phosphorylation at several of the seven C-terminal sites can inhibit E2F binding. Additionally, phosphorylation of two serine sites in the insert domain can inhibit E2F binding, but this inhibition requires the presence of the RB N-terminal region. RB mutant proteins lacking all seven C-terminal sites and two insert domain serines can block Rat-1 cells in G1. These RB mutants can bind LXCXE proteins, c-Abl, and E2F even after they become phosphorylated at the remaining nonmutated sites. Thus, multiple phosphorylation sites regulate the protein binding activities of RB through different mechanisms, and a constitutive growth suppressor can be generated through the combined mutation of the relevant phosphorylation sites in RB.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3