Affiliation:
1. Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
Abstract
Members of the Smad family of proteins are thought to play important roles in transforming growth factor beta (TGF-beta)-mediated signal transduction. In response to TGF-beta, specific Smads become inducibly phosphorylated, form heteromers with Smad4, and undergo nuclear accumulation. In addition, overexpression of specific Smad combinations can mimic the transcriptional effect of TGF-beta on both the plasminogen activator inhibitor 1 (PAI-1) promoter and the reporter construct p3TP-Lux. Although these data suggest a role for Smads in regulating transcription, the precise nuclear function of these heteromeric Smad complexes remains largely unknown. Here we show that in Mv1Lu cells Smad3 and Smad4 form a TGF-beta-induced, phosphorylation-dependent, DNA binding complex that specifically recognizes a bipartite binding site within p3TP-Lux. Furthermore, we demonstrate that Smad4 itself is a DNA binding protein which recognizes the same sequence. Interestingly, mutations which eliminate the Smad DNA binding site do not interfere with either TGF-beta-dependent transcriptional activation or activation by Smad3/Smad4 cooverexpression. In contrast, mutation of adjacent AP1 sites within this context eliminates both TGF-beta-dependent transcriptional activation and activation in response to Smad3/Smad4 cooverexpression. Furthermore, concatemerized AP1 sites, in isolation, are activated by Smad3/Smad4 cooverexpression and, to a certain extent, by TGF-beta. Taken together, these data suggest that the Smad3/Smad4 complex has at least two separable nuclear functions: it forms a rapid, yet transient sequence-specific DNA binding complex, and it potentiates AP1-dependent transcriptional activation.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
271 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献