Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis

Author:

Koumenis C1,Giaccia A1

Affiliation:

1. Department of Radiation Oncology, Stanford University School of Medicine, California 94305, USA.

Abstract

Studies have indicated that deregulated oncogene expression can result in either programmed cell death or proliferation, depending on the cellular microenvironment. However, little is known about whether oncogenic signals in themselves are able to activate a cellular apoptotic program. We have tested the hypothesis that oncogenic signals in the absence of gene expression are sufficient to induce cell death, which would indicate that constitutive expression of antiapoptotic genes is necessary for maintenance of the transformed state. Using two highly specific RNA polymerase (RNAP) II inhibitors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and alpha-amanitin, which inhibit RNAP II function by two distinct mechanisms, we found that inhibition of gene expression substantially increased apoptosis in a time- and dose-dependent manner in p53+/+- and p53(-/-)-transformed mouse embryonic fibroblasts and in HeLa cells, demonstrating that this type of apoptosis does not require wild-type p53. Engineered expression of an alpha-amanitin resistance RNAP II gene rendered cells resistant to induction of apoptosis by alpha-amanitin without affecting their sensitivity to DRB, indicating that alpha-amanitin induces apoptosis solely by inhibiting RNAP II function and not by a nonspecific mechanism. DRB-induced apoptosis was independent of the cell cycle or ongoing DNA replication, since DRB induced similar levels of apoptosis in asynchronous cells and cells synchronized by collection at mitosis. Inhibition of RNAP II in untransformed cells like Rat-1 or human AG1522 fibroblasts resulted not in apoptosis but in growth arrest. In contrast, deregulated expression of c-Myc in Rat-1 cells dramatically increased their sensitivity to DRB, directly demonstrating that apoptosis following inhibition of RNAP II function is greatly enhanced by oncogenic expression. The requirement for RNAP II function to prevent oncogene-induced apoptosis implies the need for the constitutive expression of an antiapoptotic gene(s) to maintain the transformed state. The differential sensitivities of untransformed and transformed cells to induction of apoptosis by transcriptional inhibition, coupled with the finding that this type of apoptosis is independent of p53 status, suggest that inhibition of RNAP II may be exploited therapeutically for the design of successful antitumor agents.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference58 articles.

1. Localization of an ~-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II;Bartolomei M. S.;Mol. Cell. Biol.,1987

2. Characterisation of human cyclin G1 and G2: DNA damage inducible genes;Bates S.;Oncogene,1996

3. p53 in signaling checkpoint arrest or apoptosis;Bates S.;Curr. Opin. Genet. Dev.,1996

4. An essential role for NF-~B in preventing TNF-alpha-induced cell death;Beg A. A.;Science,1996

5. Drug-induced apoptosis is not necessarily dependent on macromolecular synthesis or proliferation in the p53-negative human prostate cancer cell line PC-3;Borner M. M.;Cancer Res.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3