Author:
Lavine Mark D.,Arrizabalaga Gustavo
Abstract
ABSTRACTMonensin is a polyether ionophore antibiotic that is widely used in the control of coccidia in animals. Despite its significance in veterinary medicine, little is known about its mode of action and potential mechanisms of resistance in coccidian parasites. Here we show that monensin causes accumulation of the coccidianToxoplasma gondiiat an apparent late-S-phase cell cycle checkpoint. In addition, experiments utilizing a monensin-resistantT. gondiimutant show that this effect of monensin is dependent on the function of a mitochondrial homologue of the MutS DNA damage repair enzyme (TgMSH-1). Furthermore, the same TgMSH-1-dependent cell cycle disruption is observed with the antiparasitic ionophore salinomycin and the DNA alkylating agent methyl nitrosourea. Our results suggest a novel mechanism for the mode of action of monensin and salinomycin on coccidial parasites, in which the drug activates an MSH-1-dependent cell cycle checkpoint by an unknown mechanism, ultimately leading to the death of the parasite. This model would indicate that cell cycle disruption is an important mediator of drug susceptibility and resistance to ionophoric antibiotics in coccidian parasites.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献