How Innate Immune Mechanisms Contribute to Antibody-Enhanced Viral Infections

Author:

Ubol Sukathida1,Halstead Scott B.2

Affiliation:

1. Microbiology Department, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok 10400, Thailand

2. Supportive Research and Development Program, Pediatric Dengue Vaccine Initiative, International Vaccine Institute, Seoul, South Korea

Abstract

ABSTRACT Preexisting antibodies may enhance viral infections. In dengue, nonneutralizing antibodies raised by natural infection with one of four dengue viruses (DENVs) may enhance infection with a different virus by a process we term “intrinsic antibody-dependent enhancement” (iADE). In addition, nonprotective antibodies raised by formalin-inactivated respiratory syncytial virus (RSV) and measles virus vaccines have led to enhanced disease during breakthrough infections. Infections under iADE conditions not only facilitate the process of viral entry into monocytes and macrophages but also modify innate and adaptive intracellular antiviral mechanisms, suppressing type 1 interferon (IFN) production and resulting in enhanced DENV replication. The suppression observed in vitro has been documented in patients with severe (dengue hemorrhagic fever [DHF]) but not in patient with mild (dengue fever [DF]) secondary dengue virus infections. Important veterinary viral infections also may exhibit iADE. It is thought that use of formalin deconforms viral epitopes of RSV, resulting in poor Toll-like receptor (TLR) stimulation; suboptimal maturation of dendritic cells with reduced production of activation factors CD40, CD80, and CD86; decreased germinal center formation in lymph nodes; and the production of nonprotective antibodies. These antibodies fail to neutralize RSV, allowing replication with secondary stimulation of RSV-primed Th2 cells producing more low-avidity antibody, resulting in immune complexes deposited into affected tissue. However, when formalin-inactivated RSV was administered with a TLR agonist to mice, they were protected against wild-type virus challenge. Safe and effective vaccines against RSV/measles virus and dengue virus may benefit from a better understanding of how innate immune responses can promote production of protective antibodies.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3