Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria

Author:

Clark I A,Hunt N H

Abstract

A rapid reduction in parasitemia associated with damage to intraerythrocytic parasites was observed in Plasmodium vinckei-infected mice after they had received a single intravenous injection of alloxan. This was not prevented by prior injection of glucose, but was prevented by desferrioxamine or diethyldithiocarbamate. Prior injection of propanol partially blocked the phenomenon. A transient hemolysis was observed in malaria-infected mice, but not in controls, after injection of alloxan. This was also blocked by desferrioxamine, but not by glucose. Both the fall in parasitemia and hemolysis occurred, but less dramatically, when phenylhydrazine or hydrogen peroxide was injected into parasitized mice. Again, the hemolysis was blocked by desferrioxamine. These observations are consistent with the parasite death and hemolysis being mediated by reactive oxygen species, possibly hydroxyl radicals, and have implications for our understanding of hemolysis, endothelial damage, and parasite suppression in acute malaria. Our evidence that malaria parasites are susceptible to free oxygen radicals supports the view that high intraerythrocytic oxidative stress may contribute to the high frequencies in malarial areas of genes for certain erythrocyte-related traits and suggests that some antimalarial drugs may suppress parasites partly through oxidative damage.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3