Use of lambda unc transducing bacteriophages in genetic and biochemical characterization of H+-ATPase mutants of Escherichia coli

Author:

Mosher M E,Peters L K,Fillingame R H

Abstract

The eight subunits of the H+-ATPase of Escherichia coli are coded by the genes of the unc operon, which maps between bglB and asnA. A collection of unc mutations were transferred via P1 transduction into a strain in which lambda cI857 S7 was inserted into bglB. The lambda phage was induced, and asnA+ transducing phage that carried unc were selected. Transducing phage carrying mutations in the uncA, B, D, E, and F genes were used for complementation analysis with a collection of unc mutants, including mutants which had been reported previously but not genetically characterized. Some mutations gave a simple complementation pattern, indicating a single defective gene, whereas other mutations gave more complex patterns. Two mutants (uncE105 and uncE107) altered in the proteolipid (omega) subunit of F0 were not complemented by any of the lambda unc phage, even though both mutants had a fully functional F1 ATPase and therefore normal A and D genes. Hence, only limited conclusions can be drawn from genetic complementation alone, since it cannot distinguish normal from abnormal genes in certain classes of unc mutants. The lambda unc phage proved to be essential in characterizing several mutants defective in F0-mediated H+ translocation. The unc gene products were overproduced by heat induction of the lysogenized lambda unc phage to determine whether all the F0 subunits were in the membrane. Two mutants that gave a simple complementation pattern, indicative of one defective gene, did not assemble a three-subunit F0. The uncB108 mutant was shown to lack the chi subunit of F0 but to retain psi and omega. Trace amounts of an altered omega subunit and normal amounts of chi and psi were found in the uncE106 mutant. A substitution of aspartate for glycine at residue 58 of the protein was determined by DNA sequence analysis of the uncE gene cloned from the lambda uncE106 phage DNA. One of the omega-defective, noncomplementing mutants (uncE107) was shown to retain all three F0 subunits. The uncE gene from this mutant was also sequenced to confirm an asparagine-for-aspartate substitution at position 61 (the dicyclohexylcarbodiimide-binding site) of the omega subunit.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3