Cyclotide Interactions with the Nematode External Surface

Author:

Colgrave Michelle L.12,Huang Yen-Hua1,Craik David J.1,Kotze Andrew C.2

Affiliation:

1. The University of Queensland Institute for Molecular Bioscience, Brisbane 4072, Australia

2. CSIRO Division of Livestock Industries, CSIRO, Brisbane 4072, Australia

Abstract

ABSTRACT Cyclotides are a large family of cyclic cystine knot-containing plant peptides that have anthelminthic activities against Haemonchus contortus and Trichostrongylus colubriformis , two important gastrointestinal nematodes of sheep. In this study, we investigated the interaction of the prototypic cyclotide kalata B1 with the external surface of H. contortus larvae and adult worms. We show that cyclotides do not need to be ingested by the worms to exert their toxic effects but that an interaction with the external surface alone is toxic. Evidence for this was the toxicity toward adult worms in the presence of a chemically induced pharyngeal ligature and toxicity of cyclotides toward nonfeeding larval life stages. Uptake of tritiated inulin in ligated adult worms was increased in the presence of cyclotide, suggesting that cyclotides increase the permeability of the external membranes of adult nematodes. Polyethylene glycols of various sizes showed protective effects on the nonfeeding larval life stage, as well as in hemolytic activity assays, suggesting that discrete pores are formed in the membrane surfaces by cyclotides and that these can be blocked by polyethylene glycols of appropriate size. This increased permeability is consistent with recently reported effects of cyclotides on membranes in which kalata B1 was demonstrated to form pores and cause leakage of vesicle/cellular contents. Our data, together with known size constraints on the movement of permeants across nematode cuticle layers, suggest that one action of the cyclotides involves an interaction with the lipid-rich epicuticle layer at the surface of the worm.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3