Evolutionary Genetics of the Capsular Locus of Serogroup 6 Pneumococci

Author:

Mavroidi Angeliki1,Godoy Daniel1,Aanensen David M.1,Robinson D. Ashley2,Hollingshead Susan K.3,Spratt Brian G.1

Affiliation:

1. Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, London

2. Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom

3. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

ABSTRACT The evolution of the capsular biosynthetic ( cps ) locus of serogroup 6 Streptococcus pneumoniae was investigated by analyzing sequence variation within three serotype-specific cps genes from 102 serotype 6A and 6B isolates. Sequence variation within these cps genes was related to the genetic relatedness of the isolates, determined by multilocus sequence typing, and to the inferred patterns of recent evolutionary descent, explored using the eBURST algorithm. The serotype-specific cps genes had a low percent G+C, and there was a low level of sequence diversity in this region among serotype 6A and 6B isolates. There was also little sequence divergence between these serotypes, suggesting a single introduction of an ancestral cps sequence, followed by slight divergence to create serotypes 6A and 6B. A minority of serotype 6B isolates had cps sequences (class 2 sequences) that were ∼5% divergent from those of other serotype 6B isolates (class 1 sequences) and which may have arisen by a second, more recent introduction from a related but distinct source. Expression of a serotype 6A or 6B capsule correlated perfectly with a single nonsynonymous polymorphism within wciP , the rhamnosyl transferase gene. In addition to ample evidence of the horizontal transfer of the serotype 6A and 6B cps locus into unrelated lineages, there was evidence for relatively frequent changes from serotype 6A to 6B, and vice versa, among very closely related isolates and examples of recent recombinational events between class 1 and 2 cps serogroup 6 sequences.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3