Affiliation:
1. Department of Biochemistry & Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia
Abstract
ABSTRACT
Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon
Pyrococcus furiosus
. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 ± 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85°C using hydrogen peroxide with reduced
P. furiosus
rubredoxin as the electron donor. The specific activity was 36 μmol of rubredoxin oxidized/min/mg with apparent
K
m
values of 35 and 70 μM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and
P. furiosus
NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 μmol of H
2
O
2
reduced/min/mg of rubrerythrin at 85°C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in
Escherichia coli
grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the
E. coli
growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content.
P. furiosus
rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献