Affiliation:
1. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
2. Departments of Bioengineering and Chemistry, University of California, Berkeley, Berkeley, California
Abstract
ABSTRACT
Shewanella oneidensis
is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of
S. oneidensis
to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress by using whole-genome DNA microarrays for
S. oneidensis
. Approximately 15% (
n
= 711) of the total predicted
S. oneidensis
genes (
n
= 4,648) represented on the microarray were significantly up- or downregulated (
P
< 0.05) over a 25-min period after shift to the heat shock temperature. As expected, the majority of the genes that showed homology to known chaperones and heat shock proteins in other organisms were highly induced. In addition, a number of predicted genes, including those encoding enzymes in glycolysis and the pentose cycle, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed downregulated coexpression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, a putative regulatory site with high conservation to the
Escherichia coli
σ
32
-binding consensus sequence was identified upstream of a number of heat-inducible genes.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
168 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献