Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment

Author:

Mills Jake T.1ORCID,Minogue Susanna C.1,Snowden Joseph S.1,Arden Wynter K. C.2,Rowlands David J.1ORCID,Stonehouse Nicola J.1ORCID,Wobus Christiane E.2ORCID,Herod Morgan R.1ORCID

Affiliation:

1. Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom

2. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

Abstract

ABSTRACT Viruses interact with receptors on the cell surface to initiate and coordinate infection. The distribution of receptors on host cells can be a key determinant of viral tropism and host infection. Unravelling the complex nature of virus-receptor interactions is, therefore, of fundamental importance to understanding viral pathogenesis. Noroviruses are non-enveloped, icosahedral, positive-sense RNA viruses of global importance to human health, with no approved vaccine or antiviral agent available. Here, we use murine norovirus as a model to study the molecular mechanisms of virus-receptor interactions. We show that variation at a single amino acid residue in the major viral capsid protein, VP1 301, has a key impact on the interaction between virus and receptor. This variation did not affect virion replication or virus growth kinetics, but a specific amino acid was rapidly selected through evolution experiments and significantly improved cellular attachment when infecting cells in suspension. However, modulating plasma membrane mobility counteracted this phenotype, suggesting a role for membrane fluidity in norovirus cellular attachment. When the infectivity of a panel of recombinant viruses with single amino acid substitutions at this residue was compared in vivo , there were differences in the tissue distribution of viruses in a murine host, suggesting a role for VP1 301 in dissemination in vivo . Overall, these results highlight how capsid evolution can influence infectivity and dissemination in the host. IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.

Funder

UKRI | Medical Research Council

UKRI | Biotechnology and Biological Sciences Research Council

Wellcome Trust

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3