Molecular dissection of cis-acting regulatory elements from 5'-proximal regions of a vaccinia virus late gene cluster

Author:

Miner J N1,Weinrich S L1,Hruby D E1

Affiliation:

1. Department of Microbiology, Oregon State University, Corvallis 97331-3804.

Abstract

Promoter elements responsible for directing the transcription of six tightly clustered vaccinia virus (VV) late genes (open reading frames [ORFs] D11, D12, D13, A1, A2, and A3) from the HindIII D/A region of the viral genome were identified within the upstream sequences proximal to each individual locus. These regions were identified as promoters by excising them from the VV genome, abutting them to the bacterial chloramphenicol acetyl transferase gene, and demonstrating their ability to drive expression of the reporter gene in transient-expression assays in an orientation-specific manner. To delineate the 5' boundary of the upstream elements, two of the VV late gene (A1 and D13) promoter: CAT constructs were subjected to deletion mutagenesis procedures. A series of 5' deletions of the ORF A1 promoter from -114 to -24 showed no reduction in promoter activity, whereas additional deletion of the sequences from -24 to +2 resulted in the complete loss of activity. Deletion of the ORF A1 fragment from -114 to -104 resulted in a 24% increase in activity, suggesting the presence of a negative regulatory region. In marked contrast to previous 5' deletion analyses which have identified VV late promoters as 20- to 30-base-pair cap-proximal sequences, 5' deletions to define the upstream boundary of the ORF D13 promoter identified two positive regulatory regions, the first between -235 and -170 and the second between -123 and -106. Background levels of chloramphenicol acetyltransferase expression were obtained with deletions past -88. Significantly, this places the ORF D13 regulatory regions within the upstream coding sequences of the ORF A1. A high-stringency computer search for homologies between VV late promoters that have been thus far characterized was carried out. Several potential consensus sequences were found just upstream from RNA start sites of temporally related promoter elements. Three major conclusions are drawn from these experiments. (i) The presence of promoters preceding each late ORF supports the hypothesis that each is expressed as an individual transcriptional unit. (ii) Promoter elements can be located within the coding portion of the upstream gene. (iii) Sequence homologies between temporally related promoter elements support the notion of kinetic subclasses of late genes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3