The L-Type Calcium Ion Channel Cch1 Affects Ascospore Discharge and Mycelial Growth in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum )

Author:

Hallen Heather E.1,Trail Frances12

Affiliation:

1. Department of Plant Biology

2. Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1312

Abstract

ABSTRACT Cch1, a putative voltage-gated calcium ion channel, was investigated for its role in ascus development in Gibberella zeae . Gene replacement mutants of CCH1 were generated and found to have asci which did not forcibly discharge spores, although morphologically ascus and ascospore development in the majority of asci appeared normal. Additionally, mycelial growth was significantly slower, and sexual development was slightly delayed in the mutant; mutant mycelia showed a distinctive fluffy morphology, and no cirrhi were produced. Wheat infected with Δ cch1 mutants developed symptoms comparable to wheat infected with the wild type; however, the mutants showed a reduced ability to protect the infected stalk from colonization by saprobic fungi. Transcriptional analysis of gene expression in mutants using the Affymetrix Fusarium microarray showed 2,449 genes with significant, twofold or greater, changes in transcript abundance across a developmental series. This work extends the role of CCH1 to forcible spore discharge in G. zeae and suggests that this channel has subtle effects on growth and development.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Reference59 articles.

1. GeneChip expression analysis 2004

2. Berridge, M. J., P. Lipp, and M. D. Bootman. 2000. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol.1:11-21.

3. Berridge, M. J., M. D. Bootman, and H. L. Roderick. 2003. Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol.4:517-529.

4. Calcineurin Is Essential for Candida albicans Survival in Serum and Virulence

5. The genus Fusarium 1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3