Metabolic Engineering of Glycerol Production in Saccharomyces cerevisiae

Author:

Overkamp Karin M.1,Bakker Barbara M.2,Kötter Peter3,Luttik Marijke A. H.1,van Dijken Johannes P.1,Pronk Jack T.1

Affiliation:

1. Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft

2. Molecular Cell Physiology, Free University Amsterdam, NL-1081 HV Amsterdam, The Netherlands

3. Institut für Mikrobiologie, J. W. Goethe Universität Frankfurt, 60439 Frankfurt, Germany

Abstract

ABSTRACT Inactivation of TPI1 , the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1 -null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1- null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1 Δ nde1 Δ nde2 Δ gut2 Δ quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae . Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h −1 at 100 g of glucose · liter −1 ). In aerated batch cultures grown on 400 g of glucose · liter −1 , this engineered S. cerevisiae strain produced over 200 g of glycerol · liter −1 , corresponding to a molar yield of glycerol on glucose close to unity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference56 articles.

1. Agarwal, G. P. 1990. Glycerol, p. 95-128. In A. Fiechter (ed.), Advances in biochemical engineering/biotechnology 41: microbial bioproducts. Springer-Verlag, Berlin, Germany.

2. Purification and characterization of glycerol-3-phosphate dehydrogenase ofSaccharomyces cerevisiae

3. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1989. Current protocols in molecular biology. John Wiley and Sons New York N.Y.

4. Bailey, J. E. 1991. Toward a science of metabolic engineering. Science252:1668-1675.

5. Bakker, B. M., K. M. Overkamp, A. J. A. van Maris, P. Kötter, M. A. H. Luttik, J. P. van Dijken, and J. T. Pronk. 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev.25:15-37.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3