Metabolism of 4-Chloro-2-Methylphenoxyacetic Acid by Soil Bacteria

Author:

Bollag J.-M.1,Helling C. S.1,Alexander M.1

Affiliation:

1. Department of Agronomy, Cornell University, Ithaca, New York 14850

Abstract

A microorganism capable of degrading 4-chloro-2-methylphenoxyacetic acid (MCPA) was isolated from soil and identified as Flavobacterium peregrinum . All of the chlorine of MCPA was released as chloride, and the carboxyl-carbon was converted to volatile products by growing cultures of the bacterium, but a phenol accumulated in the medium. The phenol was identified as 4-chloro-2-methylphenol on the basis of its gas chromatographic and infrared characteristics. Extracts of cells of F. peregrinum and of a phenoxyacetate-metabolizing Arthrobacter sp. dehalogenated MCPA and several catechols but not 4-chloro-2-methylanisole. The Arthrobacter sp. cell extract was fractionated, and an enzyme preparation was obtained which catalyzed the conversion of MCPA to 4-chloro-2-methylphenol. The latter compound was not metabolized unless reduced nicotinamide adenine dinucleotide phosphate was added to the fractionated extract. The phenol in turn was apparently oxidized to a catechol by components of the enzyme preparation.

Publisher

American Society for Microbiology

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3