Successional Changes in an Evolving Anaerobic Chlorophenol-Degrading Community Used To Infer Relationships between Population Structure and System-Level Processes

Author:

Becker Jennifer G.1,Berardesco Gina1,Rittmann Bruce E.1,Stahl David A.1

Affiliation:

1. Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208

Abstract

ABSTRACT The response of a complex methanogenic sediment community to 2-chlorophenol (2-CP) was evaluated by monitoring the concentrations of this model contaminant and important metabolic intermediates and products and by using rRNA-targeted probes to track several microbial populations. Key relationships between the evolving population structure, formation of metabolic intermediates, and contaminant mineralization were identified. The nature of these relationships was intrinsically linked to the metabolism of benzoate, an intermediate that transiently accumulated during the mineralization of 2-CP. Before the onset of benzoate fermentation, reductive dehalogenation of 2-CP competed with methanogenesis for endogenous reducing equivalents. This suppressed H 2 levels, methane production, and archaeal small-subunit (SSU)-rRNA concentrations in the sediment community. The concentrations of bacterial SSU rRNA, including SSU rRNA derived from “ Desulfovibrionaceae ” populations, tracked with 2-CP levels, presumably reflecting changes in the activity of dehalogenating organisms. After the onset of benzoate fermentation, the abundance of Syntrophus -like SSU rRNA increased, presumably because these syntrophic organisms fermented benzoate to methanogenic substrates. Consequently, although the parent substrate 2-CP served as an electron acceptor, cleavage of its aromatic nucleus also influenced the sediment community by releasing the electron donors H 2 and acetate. Increased methane production and archaeal SSU-rRNA levels, which tracked with the Syntrophus -like SSU-rRNA concentrations, revealed that methanogenic populations in particular benefited from the input of reducing equivalents derived from 2-CP.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3