Type 1 Fimbriae, Curli, and Antigen 43: Adhesion, Colonization, and Biofilm Formation

Author:

Klemm Per1,Schembri Mark2

Affiliation:

1. Microbial Adhesion Group, Center for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, Bldg. 301, Technical University of Denmark, DK-2800 Lyngby, Denmark

2. Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, Bldg. 76, The University of Queensland, Brisbane, Qld 4072, Australia

Abstract

This review is primarily concerned with the first step in biofilm formation, namely, bacterial attachment to surfaces. It describes three examples of bacterial adhesins, each of which belongs to a different subgroup and follows different strategies for surface presentation and adhesin exposure. These are type 1 fimbriae, very long stiff rodlike organelles; curli, amorphous fluffy coat structures; and finally antigen 43, short outer membrane structures with a simple assembly system. Their role as adhesins, their structure and biosynthesis, and their role in biofilm formation are described in detail in the review. The FimH protein presented by type 1 fimbriae seems to be a highly versatile adhesin fulfilling a diverse spectrum of roles ranging from pellicle and biofilm formation to being a bona fide virulence factor in uropathogenic E. coli (UPEC) strains, where it plays important roles in the manifestation of cystitis. Curli formation promotes two fundamental processes associated with biofilm formation: initial adhesion and cell-to-cell aggregation. A role for curli in the colonization of inert surfaces has been demonstrated. Severe sepsis and septic shock are frequently caused by gram-negative bacteria, and several factors suggest a significant role for curli during E. coli sepsis. The protection provided by Ag43-mediated aggregation was underlined in a series of experiments addressing the role of Ag43 in protection against oxidizing agents. Type 1 fimbriae, curli, and Ag43 are structurally different bacterial surface structures and follow completely different strategies for surface display and assembly.

Publisher

American Society for Microbiology

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3