Affiliation:
1. Department of Microbiology, Robert Koch Institute, D-13353, Berlin, Germany. BeutinL@rki.de
Abstract
Two separate animal populations consisting of a herd of cattle (19 animals) and a flock of sheep (25 animals) were investigated for strains of Escherichia coli producing Shiga toxins (STEC) over a time period of 6 months. Thirty-three STEC were isolated from 63.2% of cattle and grouped into 11 serotypes and eight electrophoretic types (ETs) by multilocus enzyme analysis. In sheep, 88% of the animals excreted STEC (n = 67 isolates) belonging to 17 different serotypes and 12 different ETs. STEC from cattle and sheep differed with respect to serotype, and only 4 of the 16 ETs occurred in both animal populations. In cattle, ET14 (O116:H21) strains predominated, whereas other STEC serotypes occurred only sporadically. The predominating STEC types in sheep were ET4 (O125 strains), ET11 (O128:H2 and others), and ET14 (O146:H21). In contrast to their diversity, STEC originating from the same animal population were similar with respect to Shiga toxin (stxy genes. Almost all STEC isolated from cattle were positive for stx2 and stx2c; only one was positive for stx1. In sheep, almost all STEC isolated were positive for stx1 and stx2, whereas stx2c was not found. XbaI-digested DNAs of genetically closely related O146:H21 strains have different restriction profiles which were associated with size alterations in XbaI fragments hybridizing with stx1- and stx2-specific DNA probes. Our results indicate that stx-encoding bacteriophages might be the origin of the genetic heterogeneity in STEC from animals.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献