Expression of adenovirus E1a and E1b gene products and the Escherichia coli XGPRT gene in KB cells

Author:

Babiss L E,Young C S,Fisher P B,Ginsberg H S

Abstract

The recombinant plasmid pSV2-gpt, which contains the Escherichia coli XGPRT gene under the control of a simian virus 40 early promoter, was modified to contain the type 2 adenovirus (Ad2) XhoI-C (0 to 15.5 map units) restriction endonuclease fragment. Plasmid (pLB206) DNA was introduced into human KB cells by Ca2+-mediated DNA transfection, and transformants were selected in medium containing xanthine, aminopterin, and mycophenolic acid, as a consequence of expression of the dominant, selectable XGPRT gene. A series of 13 gpt+ cell lines were isolated and tested for their ability to complement Ad5 deletion mutants in E1a (H5dl312) and E1b (H5dl315). Four classes of gpt+ KB cell lines were identified, including clones constitutively expressing both E1a and E1b, only E1a, or only E1b or not expressing either E1a or E1b. DNA and RNA filter transfer hybridization analysis substantiated the conclusions that those cell lines capable of complementing viral host range mutants contained the appropriate viral DNA sequences and cytoplasmic polyadenylated RNA species. DNA filter transfer hybridization studies also revealed that the transfected vector DNA was stably integrated into chromosomal DNA in the KB transformants and the number of integrated sites ranged from 1 to 3. The gpt+ KB cell line that only expressed E1b gene functions only contained viral E1b gene sequences; those cell lines that expressed neither E1a nor E1b gene function contained only small or no regions of Ad2 DNA. When weaned off the selective medium, transformed KB cell lines stably maintained their inserted DNA in the absence of selective pressure and could easily be adapted to growth in suspension culture.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3