Identification of Human Papillomavirus Type 16 L1 Surface Loops Required for Neutralization by Human Sera

Author:

Carter Joseph J.1,Wipf Greg C.1,Madeleine Margaret M.23,Schwartz Stephen M.23,Koutsky Laura A.3,Galloway Denise A.14

Affiliation:

1. Program in Cancer Biology, Division of Human Biology

2. Program in Epidemiology, Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024

3. Departments of Epidemiology

4. Microbiology, University of Washington, Seattle, Washington

Abstract

ABSTRACT The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference27 articles.

1. Bosch, F. X., and S. de Sanjose. 2003. Human papillomavirus and cervical cancer—burden and assessment of causality. J. Natl. Cancer Inst. Monogr.31:3-13.

2. Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection

3. Carter, J. J., L. A. Koutsky, J. P. Hughes, S. K. Lee, J. Kuypers, N. Kiviat, and D. A. Galloway. 2000. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J. Infect. Dis.181:1911-1919.

4. Carter, J. J., L. A. Koutsky, G. C. Wipf, N. D. Christensen, S. K. Lee, J. Kuypers, N. Kiviat, and D. A. Galloway. 1996. The natural history of human papillomavirus type 16 capsid antibodies among a cohort of university women. J. Infect. Dis.174:927-936.

5. Carter, J. J., M. M. Madeleine, K. Shera, S. M. Schwartz, K. L. Cushing-Haugen, G. C. Wipf, P. Porter, J. R. Daling, J. K. McDougall, and D. A. Galloway. 2001. Human papillomavirus 16 and 18 L1 serology compared across anogenital cancer sites. Cancer Res.61:1934-1940.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3