Quantitative Distributions of Epsilonproteobacteria and a Sulfurimonas Subgroup in Pelagic Redoxclines of the Central Baltic Sea

Author:

Grote Jana1,Labrenz Matthias1,Pfeiffer Birgit1,Jost Günter1,Jürgens Klaus1

Affiliation:

1. IOW-Baltic Sea Research Institute Warnemuende, Section Biology, Seestrasse 1, 18119 Rostock-Warnemuende, Germany

Abstract

ABSTRACT Members of the class Epsilonproteobacteria are known to be of major importance in biogeochemical processes at oxic-anoxic interfaces. In pelagic redoxclines of the central Baltic Sea, an uncultured epsilonproteobacterium related to Sulfurimonas denitrificans was proposed to play a key role in chemolithotrophic denitrification (I. Brettar, M. Labrenz, S. Flavier, J. Bötel, H. Kuosa, R. Christen, and M. G. Höfle, Appl. Environ. Microbiol. 72:1364-1372, 2006). In order to determine the abundance, activity, and vertical distribution of this bacterium in high-resolution profiles, 16S rRNA cloning and catalyzed reporter deposition and fluorescence in situ hybridization (CARD-FISH) and quantitative PCR measurements were carried out. The results showed that 21% of the derived clone sequences, which in the present study were grouped together under the name GD17, had >99% similarity to the uncultured epsilonproteobacterium. A specific gene probe against GD17 (S-*-Sul-0090-a-A-18) was developed and used for enumeration by CARD-FISH. In different pelagic redoxclines sampled during August 2003, May 2005, and February 2006, GD17 cells were always detected from the lower oxic area to the sulfidic area. Maximal abundance was detected around the chemocline, where sulfide and nitrate concentrations were close to the detection limit. The highest GD17 numbers (2 × 10 5 cells ml −1 ), representing up to 15% of the total bacteria, were comparable to those reported for Epsilonproteobacteria in pelagic redoxclines of the Black Sea and the Cariaco Trench (X. Lin, S. G. Wakeham, I. F. Putnam, Y. M. Astor, M. I. Scranton, A. Y. Chistoserdov, and G. T. Taylor, Appl. Environ. Microbiol. 72:2679-2690, 2006). However, in the Baltic Sea redoxclines, Epsilonproteobacteria consisted nearly entirely of cells belonging to the distinct GD17 group. This suggested that GD17 was the best-adapted epsilonproteobacterium within this ecological niche.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3