Proteolytic Processing Is Not Essential for Multiple Functions of the Escherichia coli Autotransporter Adhesin Involved in Diffuse Adherence (AIDA-I)

Author:

Charbonneau Marie-Ève1,Berthiaume Frédéric1,Mourez Michael1

Affiliation:

1. Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, J2S 7C6, Québec, Canada

Abstract

ABSTRACT The Escherichia coli adhesin involved in diffuse adherence (AIDA-I), like many other autotransporter proteins, is released in the periplasm as a proprotein undergoing proteolytic processing after its translocation across the outer membrane. The proprotein is cleaved into a membrane-embedded fragment, AIDAc, and an extracellular fragment, the mature AIDA-I adhesin. The latter remains noncovalently associated with the outer membrane and can be released by heat treatment. The mechanism of cleavage of the proprotein and its role in the functionality of AIDA-I are not understood. Here, we show that cleavage is independent of the amount of AIDA-I in the outer membrane, suggesting an intramolecular autoproteolytic mechanism or a cleavage mediated by an unknown protease. We show that the two fragments, mature AIDA-I and AIDAc, can be cosolubilized and copurified in a folded and active conformation. We observed that the release by heat treatment results from the unfolding of AIDA-I and that the interaction of AIDA-I with AIDAc seems to be disturbed only by denaturation. We constructed an uncleavable point mutant of AIDA-I, where a serine of the cleavage site was changed into a leucine, and showed that adhesion, autoaggregation, and biofilm formation mediated by the mutant are indistinguishable from the wild-type levels. Lastly, we show that both proteins can mediate the invasion of cultured epithelial cells. Taken together, our experiments suggest that the proteolytic processing of AIDA-I plays a minor role in the functionality of this protein.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3