Identification of a Halogenase Involved in the Biosynthesis of Ochratoxin A in Aspergillus carbonarius

Author:

Ferrara Massimo1,Perrone Giancarlo1,Gambacorta Lucia1,Epifani Filomena1,Solfrizzo Michele1,Gallo Antonia2

Affiliation:

1. Institute of Sciences of Food Production, National Research Council, Bari, Italy

2. Institute of Sciences of Food Production, National Research Council, Lecce, Italy

Abstract

ABSTRACT Aspergillus carbonarius is the main responsible fungus of ochratoxin A (OTA) contamination of grapes and derived products. To date, the biosynthetic mechanism of this mycotoxin has been partially elucidated. Availability of genome sequence of A. carbonarius has allowed the identification of a putative gene cluster involved in OTA biosynthesis. This region hosts the previously characterized AcOTAnrps and AcOTApks genes encoding two key enzymes of the biosynthetic pathway. At about 4,400 nucleotides downstream of these loci, a gene encoding a putative flavin dependent-halogenase came out from the annotation data. Its proximity to OTA biosynthetic genes and its sequence analysis have suggested a role in the biosynthesis of OTA, directed to the introduction of the chlorine atom in the C-5 position of the final molecular structure of this mycotoxin. The deduced protein sequence of the halogenase gene, we designated AcOTAhal , shows a high similarity to a halogenase that is located in the OTA cluster of A. niger . The deletion of the halogenase gene completely eliminated the production of ochratoxin A in A. carbonarius and determined a significant increase of ochratoxin B, as confirmed by mass spectrometry analysis. Moreover, its expression profile was similar to the two biosynthetic genes previously identified, AcOTApks and AcOTAnrps , indicating a strong correlation of the AcOTAhal gene with the kinetics of OTA accumulation in A. carbonarius. Therefore, experimental evidence confirmed that the chlorination step which converts OTB in OTA represents the final stage of the biosynthetic pathway, supporting our earlier hypothesis on the order of enzymatic steps of OTA biosynthesis in A. carbonarius . IMPORTANCE Ochratoxin A is a potent mycotoxin classified as a possible carcinogen for humans, and Aspergillus carbonarius is the main agent responsible for OTA accumulation in grapes. We demonstrate here that a flavin-halogenase is implicated in the biosynthesis of OTA in A. carbonarius . The encoding gene, AcOTAhal , is contiguous to biosynthetic genes that we have already described ( nrps and pks ), resulting as part of the biosynthetic cluster. The encoded protein is responsible of the introduction of chlorine atom in the final molecular structure and acts at the last step in the pathway. This study can be considered a continuation of an earlier study wherein we started to clarify the molecular basis of OTA biosynthesis in A. carbonarius , which has not been completely elucidated until now. This research represents an important step forward to a better understanding of the production mechanism, which will contribute to the development of improved control strategies to reduce the risk of OTA contamination in food products.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3