Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris

Author:

Salama M1,Sandine W1,Giovannoni S1

Affiliation:

1. Department of Microbiology, Oregon State University, Corvallis 97331-3804.

Abstract

Lactococcus lactis subsp. cremoris is of considerable interest to the dairy industry, which relies upon the few available strains for the manufacture of cheddar cheese free of fermented and fruity flavors. The subspecies cremoris differs from related subspecies by the lack of a few phenotypic traits. Our purpose was to identify unique rRNA sequences that could be used to discriminate L. lactis subsp. cremoris from related subspecies. The 16S rRNAs from 13 Lactococcus strains were partially sequenced by using reverse transcriptase to identify domains unique to L. lactis subsp. cremoris. All five strains of the subspecies cremoris had a unique base sequence in a hypervariable region located 70 to 100 bases from the 5' terminus. In this region, all L. lactis subsp. lactis biovar diacetylactis strains examined had a sequence identical to that of L. lactis subsp. lactis 7962, which was different from other strains of the subspecies lactis by only one nucleotide at position 90 (Escherichia coli 16S rRNA structural model) (J. Brosius, J. L. Palmer, J. P. Kennedy, and H. F. Noller, Proc. Natl. Acad. Sci. USA 75:4801-4805, 1978). Oligonucleotide probes specific for the genus Lactococcus (212RLa) and for the subspecies cremoris (68RCa) were synthesized and evaluated by hybridization to known rRNAs as well as fixed whole cells. Efficient and specific hybridization to the genus-specific probe was observed for the 13 Lactococcus strains tested. No hybridization was seen with the control species. All five strains of the subspecies cremoris hybridized to the subspecies-specific probe.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3