Mycosubtilin Overproduction by Bacillus subtilis BBG100 Enhances the Organism's Antagonistic and Biocontrol Activities

Author:

Leclère Valérie1,Béchet Max1,Adam Akram2,Guez Jean-Sébastien1,Wathelet Bernard3,Ongena Marc2,Thonart Philippe2,Gancel Frédérique1,Chollet-Imbert Marlène1,Jacques Philippe1

Affiliation:

1. Laboratory of Microbial Bioprocesses, Polytech'Lille, University of Science and Technology of Lille, F-59655 Villeneuve d'Ascq Cedex, France

2. Centre Wallon de Biologie Industrielle, University of Liege, B40, B-4000 Liège, Belgium

3. Unité de Chimie Biologique Industrielle, Agricultural University of Gembloux, B-5030 Gembloux, Belgium

Abstract

ABSTRACT A Bacillus subtilis derivative was obtained from strain ATCC 6633 by replacement of the native promoter of the mycosubtilin operon by a constitutive promoter originating from the replication gene repU of the Staphylococcus aureus plasmid pUB110. The recombinant strain, designated BBG100, produced up to 15-fold more mycosubtilin than the wild type produced. The overproducing phenotype was related to enhancement of the antagonistic activities against several yeasts and pathogenic fungi. Hemolytic activities were also clearly increased in the modified strain. Mass spectrometry analyses of enriched mycosubtilin extracts showed similar patterns of lipopeptides for BBG100 and the wild type. Interestingly, these analyses also revealed a new form of mycosubtilin which was more easily detected in the BBG100 sample. When tested for its biocontrol potential, wild-type strain ATCC 6633 was almost ineffective for reducing a Pythium infection of tomato seedlings. However, treatment of seeds with the BBG100 overproducing strain resulted in a marked increase in the germination rate of seeds. This protective effect afforded by mycosubtilin overproduction was also visualized by the significantly greater fresh weight of emerging seedlings treated with BBG100 compared to controls or seedlings inoculated with the wild-type strain.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3