Affiliation:
1. School of Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
Abstract
ABSTRACT
The relationship among growth temperature, membrane fatty acid composition, and pressure resistance was examined in
Escherichia coli
NCTC 8164. The pressure resistance of exponential-phase cells was maximal in cells grown at 10°C and decreased with increasing growth temperatures up to 45°C. By contrast, the pressure resistance of stationary-phase cells was lowest in cells grown at 10°C and increased with increasing growth temperature, reaching a maximum at 30 to 37°C before decreasing at 45°C. The proportion of unsaturated fatty acids in the membrane lipids decreased with increasing growth temperature in both exponential- and stationary-phase cells and correlated closely with the melting point of the phospholipids extracted from whole cells examined by differential scanning calorimetry. Therefore, in exponential-phase cells, pressure resistance increased with greater membrane fluidity, whereas in stationary-phase cells, there was apparently no simple relationship between membrane fluidity and pressure resistance. When exponential-phase or stationary-phase cells were pressure treated at different temperatures, resistance in both cell types increased with increasing temperatures of pressurization (between 10 and 30°C). Based on the above observations, we propose that membrane fluidity affects the pressure resistance of exponential- and stationary-phase cells in a similar way, but it is the dominant factor in exponential-phase cells whereas in stationary-phase cells, its effects are superimposed on a separate but larger effect of the physiological stationary-phase response that is itself temperature dependent.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
186 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献