Application of Carbon Source Utilization Patterns To Measure the Metabolic Similarity of Complex Dental Plaque Biofilm Microcosms

Author:

Anderson Sally A.1,Sissons Christopher H.1,Coleman Megan J.1,Wong Lisa1

Affiliation:

1. Dental Research Group, Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand

Abstract

ABSTRACT Biolog technology was applied to measure the metabolic similarity of plaque biofilm microcosms, which model the complex properties of dental plaque in vivo. The choice of Biolog plate, incubation time, and incubation conditions strongly influenced utilization profiles. For plaque biofilm microcosms, Biolog GP2 plates incubated anaerobically in an H 2 -free atmosphere gave the clearest profile. To test the application of the Biolog GP2 assay, plaque microcosms were developed under different nutrient conditions in which the frequency of sucrose application was varied. Cluster analysis of Biolog GP2 data from 10 microcosm biofilms correlated with sucrose frequency. Aciduric bacteria ( Streptococcus mutans plus lactobacilli) predominated in the plaques receiving high-frequency sucrose applications. Agreement between the Biolog GP2 groupings with nutrient and compositional changes suggests that Biolog analysis is a valuable technique for analyzing the metabolic similarity of dental plaque biofilm microcosms and other high-nutrient or predominantly anaerobic ecosystems.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3