Identification and Characterization of a Putative Transcriptional Regulator Controlling the Expression of Fouling Inhibitors in Pseudoalteromonas tunicata

Author:

Egan Suhelen12,James Sally12,Kjelleberg Staffan12

Affiliation:

1. School of Microbiology and Immunology

2. Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia

Abstract

ABSTRACT The dark green pigmented marine bacterium Pseudoalteromonas tunicata colonizes living surfaces and produces a range of extracellular compounds that inhibit common fouling organisms, including marine invertebrate larvae, algae, bacteria, and fungi. We have observed a positive correlation between the antifouling activity of P. tunicata strain D2 and the expression of pigmentation. To address the hypothesis that pigmentation and antifouling may be jointly regulated in this organism and to begin to identify potential regulatory elements, we used transposon mutagenesis to generate a strain of P. tunicata deficient in antifouling activity. The data presented here describe the phenotypic and molecular characterization of a nonpigmented transposon mutant strain of P. tunicata (D2W2). Analyses of the antifouling capabilities of D2W2 demonstrate that this strain is deficient in the ability to inhibit each of the target fouling organisms. Genetic analysis of D2W2 identified a gene, designated wmpR (white mutant phenotype), with high sequence similarity to transcriptional regulators ToxR from Vibrio cholerae and CadC from Escherichia coli . Two-dimensional polyacrylamide gel electrophoresis analysis revealed that WmpR is essential for the expression of a significant subset of stationary-phase-induced proteins likely to be important for the synthesis of fouling inhibitors. The identification of a gene involved in the regulation of expression of antifouling phenotypes will contribute to the understanding of the interactions between bacteria and other surface-colonizing organisms in the marine environment.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3