Genetics of Mycobacterial Trehalose Metabolism

Author:

Kalscheuer Rainer1,Koliwer-Brandl Hendrik1

Affiliation:

1. Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany

Abstract

ABSTRACT Trehalose [alpha- d -glucopyranosyl-(1→1)-alpha- d -glucopyranoside] is a highly abundant disaccharide in mycobacteria that fulfills many biological roles and has a plethora of possible metabolic fates. Trehalose is synthesized in mycobacteria de novo either from glycolytic intermediates or from alpha-glucans via two alternative routes, the OtsA-OtsB and the TreY-TreZ pathways, respectively. Intracellular trehalose can serve as an endogenous remobilizable carbon storage compound and as a biocompatible stress protectant. Furthermore, trehalose functions as the sugar core of many glycolipids with important structural or immunomodulatory functions such as the cord factor trehalose dimycolate, sulfolipids, and polyacyltrehalose. Moreover, trehalose plays a central role in the formation of the mycolic acid cell wall layer because it serves as a carrier molecule that shuttles mycolic acids in the form of the glycolipid trehalose monomycolate between the cytoplasm and the periplasm. In this process, a specific importer recycles the free trehalose that is extracellularly released as a by-product during mycolate processing via the antigen 85 complex, which might represent a specific adaptation to the intracellular lifestyle of Mycobacterium tuberculosis with limited carbohydrate availability. Finally, trehalose is converted to glycogen-like branched alpha-glucans by a four-step metabolic pathway involving the essential maltosyltransferase GlgE, which may be further processed to derivatives with intracellular or extracellular destinations such as polymethylated lipopolysaccharides or capsular alpha-glucans, respectively. In this article we summarize the current knowledge of the genetic basis of trehalose biosynthesis and metabolism in mycobacteria, the biological functions of trehalose-based molecules, and their roles in virulence of the human pathogen M. tuberculosis .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3