TraG-Like Proteins of Type IV Secretion Systems: Functional Dissection of the Multiple Activities of TraG (RP4) and TrwB (R388)

Author:

Schröder Gunnar1,Lanka Erich1

Affiliation:

1. Max-Planck-Institut für Molekulare Genetik, Abteilung Lehrach, Dahlem, D-14195 Berlin, Germany

Abstract

ABSTRACT TraG-like proteins are essential components of type IV secretion systems. During secretion, TraG is thought to translocate defined substrates through the inner cell membrane. The energy for this transport is presumably delivered by its potential nucleotide hydrolase (NTPase) activity. TraG of conjugative plasmid RP4 is a membrane-anchored oligomer that binds RP4 relaxase and DNA. TrwB (R388) is a hexameric TraG-like protein that binds ATP. Both proteins, however, lack NTPase activity under in vitro conditions. We characterized derivatives of TraG and TrwB truncated by the N-terminal membrane anchor (TraGΔ2 and TrwBΔ1) and/or containing a point mutation at the putative nucleotide-binding site (TraGΔ2K187T and TraGK187T). Unlike TraG and TrwB, truncated derivatives behaved as monomers without the tendency to form oligomers or aggregates. Surface plasmon resonance analysis with immobilized relaxase showed that mutant TraGK187T was as good a binding partner as the wild-type protein, whereas truncated TraG monomers were unable to bind relaxase. TraGΔ2 and TrwBΔ1 bound ATP and, with similar affinity, ADP. Binding of ATP and ADP was strongly inhibited by the presence of Mg 2+ or single-stranded DNA and was competed for by other nucleotides. Compared to the activity of TraGΔ2, the ATP- and ADP-binding activity of the point mutation derivative TraGΔ2K187T was significantly reduced. Each TraG derivative bound DNA with an affinity similar to that of the native protein. DNA binding was inhibited or competed for by ATP, ADP, and, most prominently, Mg 2+ . Thus, both nucleotide binding and DNA binding were sensitive to Mg 2+ and were competitive with respect to each other.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3