Affiliation:
1. Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany.
Abstract
Streptomyces lividans 66 exhibits genetic instability, involving sequential loss of resistance to chloramphenicol (Cams) and subsequent mutation of argG. Associated with this instability is the amplification of a 5.7-kilobase (kb) amplified DNA sequence (ADS). We have characterized a second, independent pathway of genetic instability, involving sequential loss of resistance to tetracycline (Tets) followed by mutation in nitrogen assimilation (Ntr). We detected DNA amplification in many of these mutant strains, as well as other reiterations coresident with the 5.7-kb ADS in Cams Arg mutants. However, in contrast to the 5.7-kb ADS, none of the novel elements were observed to amplify at high frequency. The mutation of argG is due to a deletion, one endpoint of which is defined by the 5.7-kb ADS. This amplification derives from a structure, the tandemly duplicated amplifiable unit of DNA (AUD), present in the wild-type genome. We found that progenitor strains containing just a single-copy AUD failed to reproducibly generate amplification of this element in Cams argG mutants, and DNA deletion endpoints proximal to the element were found to be unspecific. These results suggest that a duplicated AUD structure is required for high-frequency amplification and that this reiteration can subsequently buffer the extent of deletion formation in the relevant chromosomal region.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献