Sequence Diversity and Molecular Evolution of the Heat-Modifiable Outer Membrane Protein Gene ( ompA ) of Mannheimia ( Pasteurella ) haemolytica , Mannheimia glucosida , and Pasteurella trehalosi

Author:

Davies Robert L.1,Lee Inkyoung1

Affiliation:

1. Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Abstract

ABSTRACT The OmpA (or heat-modifiable) protein is a major structural component of the outer membranes of gram-negative bacteria. The protein contains eight membrane-traversing β-strands and four surface-exposed loops. The genetic diversity and molecular evolution of OmpA were investigated in 31 Mannheimia ( Pasteurella ) haemolytica , 6 Mannheimia glucosida , and 4 Pasteurella trehalosi strains by comparative nucleotide sequence analysis. The OmpA proteins of M. haemolytica and M. glucosida contain four hypervariable domains located at the distal ends of the surface-exposed loops. The hypervariable domains of OmpA proteins from bovine and ovine M. haemolytica isolates are very different but are highly conserved among strains from each of these two host species. Fourteen different alleles representing four distinct phylogenetic classes, classes I to IV, were identified in M. haemolytica and M. glucosida . Class I, II, and IV alleles were associated with bovine M. haemolytica , ovine M. haemolytica , and M. glucosida strains, respectively, whereas class III alleles were present in certain M. haemolytica and M. glucosida isolates. Class I and II alleles were associated with divergent lineages of bovine and ovine M. haemolytica strains, respectively, indicating a history of horizontal DNA transfer and assortative (entire gene) recombination. Class III alleles have mosaic structures and were derived by horizontal DNA transfer and intragenic recombination. Our findings suggest that OmpA is under strong selective pressure from the host species and that it plays an important role in host adaptation. It is proposed that the OmpA protein of M. haemolytica acts as a ligand and is involved in binding to specific host cell receptor molecules in cattle and sheep. P. trehalosi expresses two OmpA homologs that are encoded by different tandemly arranged ompA genes. The P. trehalosi ompA genes are highly diverged from those of M. haemolytica and M. glucosida , and evidence is presented to suggest that at least one of these genes was acquired by horizontal DNA transfer.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3