Affiliation:
1. Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida
2. Section of Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
Abstract
ABSTRACT
The mechanism by which herpes simplex virus 1 (HSV-1) establishes latency in sensory neurons is largely unknown. Recent studies indicate that epigenetic modifications of the chromatin associated with the latent genome may play a key role in the transcriptional control of lytic genes during latency. In this study, we found both constitutive and facultative types of heterochromatin to be present on the latent HSV-1 genome. Deposition of the facultative marks trimethyl H3K27 and histone variant macroH2A varied at different sites on the genome, whereas the constitutive marker trimethyl H3K9 did not. In addition, we show that in the absence of the latency-associated transcript (LAT), the latent genome shows a dramatic increase in trimethyl H3K27, suggesting that expression of the LAT during latency may act to promote an appropriate heterochromatic state that represses lytic genes but is still poised for reactivation. Due to the presence of the mark trimethyl H3K27, we examined whether Polycomb group proteins, which methylate H3K27, were present on the HSV-1 genome during latency. Our data indicate that Bmi1, a member of the Polycomb repressive complex 1 (PRC1) maintenance complex, associates with specific sites in the genome, with the highest level of enrichment at the LAT enhancer. To our knowledge, these are the first data demonstrating that a virus can repress its gene transcription to enter latency by exploiting the mechanism of Polycomb-mediated repression.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献