Mycobacterium tuberculosis Chaperonin 60.1 Is a More Potent Cytokine Stimulator than Chaperonin 60.2 (Hsp 65) and Contains a CD14-Binding Domain

Author:

Lewthwaite Jo C.1,Coates Anthony R. M.2,Tormay Peter2,Singh Mahavir3,Mascagni Paolo4,Poole Stephen5,Roberts Michael2,Sharp Lindsay1,Henderson Brian1

Affiliation:

1. Cellular Microbiology Research Group, Eastman Dental Institute, University College London,1and

2. Department of Medical Microbiology, St. George's Hospital Medical School, Tooting,2 London, and

3. Department of Biochemistry, TU-Braunschweig, c/o GBF, and Lionex GmbH, Braunschweig, Germany3; and

4. Italfarmaco SpA, Centro Richerche, Cinisello B (MI), Italy4

5. Division of Endocrinology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire,5 United Kingdom;

Abstract

ABSTRACT Much attention has focused on the Mycobacterium tuberculosis molecular chaperone chaperonin (Cpn) 60.2 (Hsp 65) in the pathology of tuberculosis because of its immunogenicity and ability to directly activate human monocytes and vascular endothelial cells. However, M . tuberculosis is one of a small group of bacteria that contain multiple genes encoding Cpn 60 proteins. We have now cloned and expressed both M . tuberculosis proteins and report that the novel chaperonin 60, Cpn 60.1, is a more potent inducer of cytokine synthesis than is Cpn 60.2. This is in spite of 76% amino acid sequence similarity between the two mycobacterial chaperonins. The M . tuberculosis Cpn 60.2 protein activates human peripheral blood mononuclear cells by a CD14-independent mechanism, whereas Cpn 60.1 is partially CD14 dependent and contains a peptide sequence whose actions are blocked by anti-CD14 monoclonal antibodies. The cytokine-inducing activity of both chaperonins is extremely resistant to heat. Cpn 60.1 may be an important virulence factor in tuberculosis, able to activate cells by diverse receptor-driven mechanisms.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3