The Extent of Migration of the Holliday Junction Is a Crucial Factor for Gene Conversion in Rhizobium etli

Author:

Castellanos Mildred1,Romero David1

Affiliation:

1. Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México

Abstract

ABSTRACT Gene conversion, defined as the nonreciprocal transfer of DNA, is one result of homologous recombination. Three steps in recombination could give rise to gene conversion: (i) DNA synthesis for repair of the degraded segment, (ii) Holliday junction migration, leading to heteroduplex formation, and (iii) repair of mismatches in the heteroduplex. There are at least three proteins (RuvAB, RecG, and RadA) that participate in the second step. Their roles have been studied for homologous recombination, but evidence of their relative role in gene conversion is lacking. In this work, we showed the effect on gene conversion of mutations in ruvB , recG , and radA in Rhizobium etli , either alone or in combination, using a cointegration strategy previously developed in our laboratory. The results indicate that the RuvAB system is highly efficient for gene conversion, since its absence provokes smaller gene conversion segments than those in the wild type as well as a shift in the preferred position of conversion tracts. The RecG system possesses a dual role for gene conversion. Inactivation of recG leads to longer gene conversion tracts than those in the wild type, indicating that its activity may hinder heteroduplex extension. However, under circumstances where it is the only migration activity present (as in the ruvB radA double mutant), conversion segments can still be seen, indicating that RecG can also promote gene conversion. RadA is the least efficient system in R. etli but is still needed for the production of detectable gene conversion tracts.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3