Quantification of expression of linked cloned genes in a simian virus 40-transformed xeroderma pigmentosum cell line.

Author:

Protić-Sabljić M,Whyte D,Fagan J,Howard B H,Gorman C M,Padmanabhan R,Kraemer K H

Abstract

We wished to determine whether simian virus 40 (SV40)-transformed xeroderma pigmentosum cells, despite their defective DNA repair, were suitable for DNA-mediated gene transfer experiments with linked genes. Expression of a nonselectable gene (cat, coding for chloramphenicol acetyltransferase [CAT]) linked to a selectable gene (gpt, coding for xanthine-guanine phosphoribosyltransferase [XPRT]) in the plasmid pSV2catSVgpt was quantified after transfection of SV40-transformed xeroderma pigmentosum [XP20s(SV40)] and normal human [GM0637(SV40)] fibroblast cell lines. A novel autoradiographic assay with [3H]xanthine incorporation showed 0.5 to 0.7% phenotypic expression of XPRT in both cell lines. Without selection, transient CAT activity was 20 times greater in the GM0637(SV40) than in the XP20s(SV40) cells, and transient XPRT activity was 5 times greater. Both of these transient activities were increased and equalized in both cell lines by transfection with pRSVcat or pRSVgpt. Genotypic transformation to gpt+ occurred at a frequency of 2 X 10(-4) to 4 X 10(-4) in both cell lines with pSV2catSVgpt. After 2 to 3 months in selective medium, stable expression of the (nonselected) cat gene was found in 11 (92%) of 12 gpt-containing clones derived from GM0637(SV40) cells and in 13 (81%) of 16 gpt-containing clones from XP20s(SV40) cells. However, the levels of CAT activity did not correlate with those of XPRT activity, and both of these activities varied more than 100-fold among different clones. Copies (1 to 4) of the gpt gene were integrated in four clones of the GM0637(SV40) cells having an XPRT activity of 1 to 5 nmol/min per mg, but 5 to 80 copies were integrated in four XP20s(SV40) clones with an XPRT activity of 0.8 to 1.8 nmol/min per mg. This study shows that XP20s(SV40) is as suitable for gene transfer experiments as the normal human line GM0637(SV40).

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3