S2P intramembrane protease RseP degrades small membrane proteins and suppresses the cytotoxicity of intrinsic toxin HokB

Author:

Yokoyama Tatsuhiko1ORCID,Yamagata Yutaro1,Honna Saisei1,Mizuno Shinya1,Katagiri Shizuka2,Oi Rika2,Nogi Terukazu2ORCID,Hizukuri Yohei1ORCID,Akiyama Yoshinori1ORCID

Affiliation:

1. Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku , Kyoto, Japan

2. Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku , Yokohama, Japan

Abstract

ABSTRACT The site2 - protease (S2P) family of intramembrane proteases (IMPs) is conserved in all kingdoms of life and cleaves transmembrane proteins within the membrane to regulate and maintain various cellular activities. RseP, an Escherichia coli S2P peptidase, is involved in the regulation of gene expression through the regulated cleavage of the two target membrane proteins (RseA and FecR) and in membrane quality control through the proteolytic elimination of remnant signal peptides. RseP is expected to have additional substrates and to be involved in other cellular processes. Recent studies have shown that cells express small membrane proteins (SMPs; single-spanning membrane proteins of approximately 50–100 amino acid residues) with crucial cellular functions. However, little is known about their metabolism, which affects their functions. This study investigated the possible RseP-catalyzed cleavage of E. coli SMPs based on the apparent similarity of the sizes and structures of SMPs to those of remnant signal peptides. We screened SMPs cleaved by RseP in vivo and in vitro and identified 14 SMPs, including HokB, an endogenous toxin that induces persister formation, as potential substrates. We demonstrated that RseP suppresses the cytotoxicity and biological functions of HokB. The identification of several SMPs as novel potential substrates of RseP provides a clue to a comprehensive understanding of the cellular roles of RseP and other S2P peptidases and highlights a novel aspect of the regulation of SMPs. IMPORTANCE Membrane proteins play an important role in cell activity and survival. Thus, understanding their dynamics, including proteolytic degradation, is crucial. E. coli RseP, an S2P family intramembrane protease, cleaves membrane proteins to regulate gene expression in response to environmental changes and to maintain membrane quality. To identify novel substrates of RseP, we screened small membrane proteins (SMPs), a group of proteins that have recently been shown to have diverse cellular functions, and identified 14 potential substrates. We also showed that RseP suppresses the cytotoxicity of the intrinsic toxin, HokB, an SMP that has been reported to induce persister cell formation, by degrading it. These findings provide new insights into the cellular roles of S2P peptidases and the functional regulation of SMPs.

Funder

MEXT | Japan Society for the Promotion of Science

Platform Project for Supporting in Drug Discovery and Life Science Research form the Japan Agency for Medical Research and Development

Cooperative Research Program (Joint Usage/Research Centerprogram) of the Institute for Frontier Life and Medical Sciences Kyoto University

Institute for Frontier Life and Medical Sciences, Kyoto University for INFRONT Office of Director's Research Grant Program

Institute for Fermentation, Osaka

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3