Affiliation:
1. Department of Biology, University of Utah, Salt Lake City 84112.
Abstract
Bacterial DNA ligases use NAD as an energy source. In this study we addressed two questions about these enzymes. First, what is the physiological consequence of completely removing the NAD-dependent enzyme and replacing it with an ATP-dependent DNA ligase? We constructed Salmonella typhimurium strains in which the endogenous NAD-dependent DNA ligase activity was inactivated by an insertion mutation and the ATP-dependent enzyme from bacteriophage T4 was provided by a cloned phage gene. Such strains were physiologically indistinguishable from the wild type, even under conditions of UV irradiation or treatment with alkylating agents. These results suggest that specific functional interactions between DNA ligase and other replication and repair enzymes may be unimportant under the conditions tested. Second, the importance of DNA ligation as the initiating event of the bacterial pyridine nucleotide cycle was critically assessed in these mutant strains. Surprisingly, our results indicate that DNA ligation makes a minimal contribution to the pyridine nucleotide cycle; the Salmonella strains with only an ATP-dependent ligase had the same NAD turnover rates as the wild-type strain with an NAD-dependent ligase. However, we found that NAD turnover was significantly decreased under anaerobic conditions. We suggest that most intracellular pyridine nucleotide breakdown occurs in a process that protects the cell against oxygen damage but involves a biochemical mechanism other than DNA ligation.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献