hnRNPs Relocalize to the Cytoplasm following Infection with Vesicular Stomatitis Virus

Author:

Pettit Kneller Elizabeth L.1,Connor John H.2,Lyles Douglas S.1

Affiliation:

1. Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157

2. Department of Microbiology, Boston University School of Medicine, 75 East Concord St., Boston, Massachusetts 02118

Abstract

ABSTRACT Vesicular stomatitis virus (VSV) matrix protein inhibits nuclear-cytoplasmic mRNA transport. The goal of this work is to determine whether VSV inhibits the nuclear-cytoplasmic transport of heterogeneous ribonucleoproteins (hnRNPs), which are thought to serve as mRNA export factors. Confocal microscopy experiments showed that hnRNPA1, hnRNPK, and hnRNPC1/C2, but not hnRNPB1 or lamin A/C, are relocalized to the cytoplasm during VSV infection. We determined whether protein import is inhibited by VSV by transfecting cells with a plasmid encoding enhanced green fluorescent protein (EGFP) tagged with either the M9 nuclear localization sequence (NLS) or the classical NLS. These experiments revealed that both the M9 NLS and the classical NLS are functional during VSV infection. These data suggest that the inhibition of protein import is not responsible for hnRNP relocalization during VSV infection but that hnRNP export is enhanced. We found that hnRNPA1 relocalization was significantly reduced following the silencing of the mRNA export factor Rae1, indicating that Rae1 is necessary for hnRNP export. In order to determine the role of hnRNPA1 in VSV infection, we silenced hnRNPA1 in HeLa cells and assayed three aspects of the viral life cycle: host protein synthesis shutoff concurrent with the onset of viral protein synthesis, replication by plaque assay, and cell killing. We observed that host shutoff and replication are unaffected by the reduction in hnRNPA1 but that the rate of VSV-induced apoptosis is slower in cells that have reduced hnRNPA1. These data suggest that VSV promotes hnRNPA1 relocalization in a Rae1-dependent manner for apoptotic signaling.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3