Mutation to Overproduction of Bacteriophage T4 Gene Products

Author:

Karam J. D.1,Bowles M. G.1

Affiliation:

1. Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29401

Abstract

R9 was isolated as one of several mutations that enhanced the growth of a leaky amber ( am ) mutant of bacteriophage T4 gene 62 (product required for phage DNA synthesis) under conditions of partial suppression by ribosomal ambiguity. R9 also enhanced the growth of leaky am mutants of some, but not all, other T4 “early” gene functions. R9 mapped between mutations in genes 43 and 62. By using assays involving polyacrylamide slab gel electrophoresis in the presence of sodium dodecyl sulfate, we observed the following. (i) R9 resulted in an overproduction of many T4 “early” proteins in infected cells. The most pronounced effects of R9 were observed when phage DNA synthesis and/or the functions of maturation genes 55 and 33 were not expressed. (ii) In rifampintreated infected cells, the capacity to synthesize T4 “early” proteins decayed more slowly in the presence of the R9 mutation than in the presence of the wild-type counterpart of R9. R9 appeared to have no effect on the rates of RNA synthesis either during early or late times after infection. The results suggest that the R9 mutation leads to increased functional stability of T4 “early” messengers.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacteriophage T4 Genome;Microbiology and Molecular Biology Reviews;2003-03

2. Microarray Analysis of Gene Expression during Bacteriophage T4 Infection;Virology;2002-08

3. DNA polymerase of the T4-related bacteriophages;Progress in Nucleic Acid Research and Molecular Biology;2000

4. Post-transcriptional controls in bacteriophage T4: roles of the sequence-specific endoribonuclease RegB;FEMS Microbiology Reviews;1995-08

5. Binding specificity of T4 DNA polymerase to RNA.;Journal of Biological Chemistry;1994-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3