Kinetic analysis of microbe opsonification based on stimulated polymorphonuclear leukocyte oxygenation activity

Author:

Allen R C,Lieberman M M

Abstract

With Pseudomonas aeruginosa as the target microbes and polymorphonuclear leukocytes (PMNL) as effector phagocytes, the microbe-specific, immunoglobulin G (IgG)-dependent opsonic capacities of preimmune and immune sera were measured as the rate of stimulated PMNL dioxygenation of luminol yielding chemiluminescence (CL). When the reactants other than opsonin are present in concentrations that are not rate limiting, the information-effector relationship linking specific opsonin concentration to effector PMNL stimulation is described by the rate equation: L' = k'[IgG]i, where L' is the peak CL velocity (photons per minute), k' is the proportionality constant, [IgG] is the concentration of specific opsonin, and the exponent i is the order of the reaction with respect to opsonin. Since the specific opsonins were polyclonal IgG of unknown absolute serum concentration, the reciprocal rate expression, L' = k'D-i, was employed for data presentation; D is the serum dilution (final volume/initial serum volume), and the sign of i is changed to negative. The relationships of integral, first-derivative, and second-derivative expressions of the CL response to opsonin concentration are illustrated with experimentally obtained data. Based on peak CL velocity or peak CL acceleration measurements taken over different time intervals of testing, the estimated order with respect to opsonin is highest, and probably most accurate, using the shortest test interval allowing reasonably good precision of measurement. As an alternative temporal approach, microbe opsonification kinetics are analyzed based on nodal time (Tn) measurements. The Tn is the time point separating the acceleration and deceleration phases of the PMNL oxygenation response to stimulation and as such satisfies the criterion of a selected condition of PMNL activation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3