Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses

Author:

Clarke D K1,Duarte E A1,Moya A1,Elena S F1,Domingo E1,Holland J1

Affiliation:

1. Department of Biology, University of California, San Diego, La Jolla 92093-0116.

Abstract

Repeated clone-to-clone (genetic bottleneck) passages of an RNA phage and vesicular stomatitis virus have been shown previously to result in loss of fitness due to Muller's ratchet. We now demonstrate that Muller's ratchet also operates when genetic bottleneck passages are carried out at 37 rather than 32 degrees C. Thus, these fitness losses do not depend on growth of temperature-sensitive (ts) mutants at lowered temperatures. We also demonstrate that during repeated genetic bottleneck passages, accumulation of deleterious mutations does occur in a stepwise (ratchet-like) manner as originally proposed by Muller. One selected clone which had undergone significant loss of fitness after only 20 genetic bottleneck passages was passaged again in clone-to-clone series. Additional large losses of fitness were observed in five of nine independent bottleneck series; the relative fitnesses of the other four series remained close to the starting fitness. In sharp contrast, when the same selected clone was transferred 20 more times as large populations (10(5) to 10(6) PFU transferred at each passage), significant increases in fitness were observed in all eight passage series. Finally, we selected several clones which had undergone extreme losses of fitness during 20 bottleneck passages. When these low-fitness clones were passaged many times as large virus populations, they always regained very high relative fitness. We conclude that transfer of large populations of RNA viruses regularly selects those genomes within the quasispecies population which have the highest relative fitness, whereas bottleneck transfers have a high probability of leading to loss of fitness by random isolation of genomes carrying debilitating mutations. Both phenomena arise from, and underscore, the extreme mutability and variability of RNA viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3