Infection of Epithelial Cells by Pathogenic Neisseriae Reduces the Levels of Multiple Lysosomal Constituents

Author:

Ayala Patricia1,Lin Lan2,Hopper Sylvia1,Fukuda Minoru3,So Magdalene1

Affiliation:

1. Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201-30981;

2. Division of Radiation Biology, CBRL, Department of Radiation Oncology, Stanford University, Stanford, California 943052; and

3. Glycobiology Program, The Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 920373

Abstract

ABSTRACT Members of our group reported recently that neisseria infection of human epithelial cells results in accelerated degradation of the major lysosomal integral membrane protein LAMP1 and that this is due to hydrolysis of this glycoprotein at its immunoglobulin A1 (IgA1)-like hinge by the neisseria type 2 IgA1 protease (L. Lin et al., Mol. Microbiol. 24:1083–1094, 1997). We also reported that the IgA1 protease plays a major role in the ability of the pathogenic neisseriae to survive within epithelial cells and hypothesized that this is due to alteration of lysosomes as a result of protease-mediated LAMP1 degradation. In this study, we tested the hypothesis that neisseria infection leads to multiple changes in lysosomes. Here, we report that neisseria infection also reduces the levels of three other lysosomal markers: LAMP2, lysosomal acid phosphatase (LAP), and CD63. In contrast, neither the epidermal growth factor receptor level nor the β-tubulin level is affected. A detailed examination of LAMP2 indicated that the reduced LAMP2 levels are not the result of an altered biosynthetic rate or of cleavage by the IgA1 protease. Nevertheless, the protease plays a role in reducing LAMP2 and LAP activity levels, as these are partially restored in cells infected with an iga mutant. We conclude that neisseria infection results in multiple changes to the lysosomes of infected epithelial cells and that these changes are likely an indirect result of IgA1 protease-mediated cleavage of LAMP1.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3