Residues C123 and D58 of the 2-Methylisocitrate Lyase (PrpB) Enzyme of Salmonella enterica Are Essential for Catalysis

Author:

Grimek T. L.1,Holden H.2,Rayment I.2,Escalante-Semerena J. C.1

Affiliation:

1. Departments of Bacteriology

2. Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

ABSTRACT The prpB gene of Salmonella enterica serovar Typhimurium LT2 encodes a protein with 2-methylisocitrate (2-MIC) lyase activity, which cleaves 2-MIC into pyruvate and succinate during the conversion of propionate to pyruvate via the 2-methylcitric acid cycle. This paper reports the isolation and kinetic characterization of wild-type and five mutant PrpB proteins. Wild-type PrpB protein had a molecular mass of approximately 32 kDa per subunit, and the biologically active enzyme was comprised of four subunits. Optimal 2-MIC lyase activity was measured at pH 7.5 and 50°C, and the reaction required Mg 2+ ions; equimolar concentrations of Mn 2+ ions were a poor substitute for Mg 2+ (28% specific activity). Dithiothreitol (DTT) or reduced glutathione (GSH) was required for optimal activity; the role of DTT or GSH was apparently not to reduce disulfide bonds, since the disulfide-specific reducing agent Tris(2-carboxyethyl)phosphine hydrochloride failed to substitute for DTT or GSH. The K m of PrpB for 2-MIC was measured at 19 μM, with a k cat of 105 s −1 . Mutations in the prpB gene were introduced by site-directed mutagenesis based on the active-site residues deemed important for catalysis in the closely related phosphoenolpyruvate mutase and isocitrate lyase enzymes. Residues D58, K121, C123, and H125 of PrpB were changed to alanine, and residue R122 was changed to lysine. Nondenaturing polyacrylamide gel electrophoresis indicated that all mutant PrpB proteins retained the same oligomeric state of the wild-type enzyme, which is known to form tetramers. The PrpB K121A , PrpB H125A , and PrpB R122K mutant proteins formed enzymes that had 1,050-, 750-, and 2-fold decreases in k cat for 2-MIC lyase activity, respectively. The PrpB D58A and PrpB C123A proteins formed tetramers that displayed no detectable 2-MIC lyase activity indicating that both of these residues are essential for catalysis. Based on the proposed mechanism of the closely related isocitrate lyases, PrpB residue C123 is proposed to serve as the active site base, and residue D58 is critical for the coordination of a required Mg 2+ ion.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3