Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes

Author:

Collins P L,Huang Y T,Wertz G W

Abstract

Nine mRNAs, their cDNA clones, and a genome transcriptional map have been reported previously for respiratory syncytial virus (P. L. Collins and G. W. Wertz, Proc. Natl. Acad. Sci. U.S.A. 80:3208-3212, 1983). We report here the identification of a 10th viral mRNA, designated mRNA 2b (molecular weight [MW] ca. 0.39 X 10(6)), that was detected by RNA (Northern) blot hybridization with cDNA clones. Analysis of a polycistronic readthrough transcript was used to deduce the position in the viral transcriptional map of the gene encoding the newly identified mRNA. The polypeptide coding assignments of 9 of the 10 respiratory syncytial virus mRNAs were determined. Individual viral mRNAs were purified by hybridization selection with nine unique, nonoverlapping cDNA clones and analyzed by translation in vitro. Each of the nine mRNAs encoded a single polypeptide chain. The coding assignments were as follows: RNA 1a (MW ca. 0.24 X 10(6)), a 9,500-dalton (9.5K) protein; RNA 1b (MW 0.26 X 10(6)), an 11K protein; RNA 1c (MW 0.26 X 10(6)), a 14K protein; RNA 2a (MW 0.38 X 10(6)), the 34K phosphorylated (P) protein; RNA 2b (MW 0.39 X 10(6)), a 36K protein; RNA 3a (MW 0.40 X 10(6)), the 26K matrix (M) protein; RNA 3b (MW 0.40 X 10(6)), a 24K protein; RNA 4 (MW 0.47 X 10(6)), the 42K major nucleocapsid (N) protein; and RNA 5 (MW 0.74 X 10(6)), a 59K protein. The cDNA clones used for the hybridization selections were respiratory syncytial virus specific and did not hybridize with uninfected-cell mRNA; therefore the proteins synthesized with the selected mRNAs were virus specific. The 9.5K, 11K, 14K, 24K, M, P, 36K, N, and 59K proteins were encoded by different mRNAs; therefore these nine proteins are all unique. The 9.5K, 11K, 14K, 24K, M, P, and N proteins synthesized in vitro with hybrid-selected mRNAs each had counterparts with the same electrophoretic mobilities in extracts of virus-infected cells. The in vitro polypeptides and their authentic counterparts were shown to be closely related by limited digest peptide mapping. The 36K and 59K polypeptides lacked counterparts with the same electrophoretic mobilities in infected cells and therefore are candidates for the unprocessed precursors of the viral F and G glycoproteins. The 10th viral mRNA, the 2,500K RNA 7, was not tested directly but is the only known mRNA of the appropriate size to encode the 200K large (L) protein of the viral nucleocapsid. These assignments account for all 10 of the reported viral mRNAs and bring to 10 the number of known unique viral proteins.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3