Directed Molecular Evolution of an Engineered Gammaretroviral Envelope Protein with Dual Receptor Use Shows Stable Maintenance of Both Receptor Specificities

Author:

Friis Kristina Pagh12,Iturrioz Xavier234,Thomsen Jonas1,Alvear-Perez Rodrigo234,Bahrami Shervin15,Llorens-Cortes Catherine234,Pedersen Finn Skou1

Affiliation:

1. Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark

2. Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris, France

3. Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France

4. CNRS, UMR 7241, Paris, France

5. SKAUvaccines, Aarhus, Denmark

Abstract

ABSTRACT We have previously reported the construction of a murine leukemia virus-based replication-competent gammaretrovirus (SL3-AP) capable of utilizing the human G protein-coupled receptor APJ (hAPJ) as its entry receptor and its natural receptor, the murine Xpr1 receptor, with equal affinities. The apelin receptor has previously been shown to function as a coreceptor for HIV-1, and thus, adaptation of the viral vector to this receptor is of significant interest. Here, we report the molecular evolution of the SL3-AP envelope protein when the virus is cultured in cells harboring either the Xpr1 or the hAPJ receptor. Interestingly, the dual receptor affinity is maintained even after 10 passages in these cells. At the same time, the chimeric viral envelope protein evolves in a distinct pattern in the apelin cassette when passaged on D17 cells expressing hAPJ in three separate molecular evolution studies. This pattern reflects selection for reduced ligand-receptor interaction and is compatible with a model in which SL3-AP has evolved not to activate hAPJ receptor internalization. IMPORTANCE Few successful examples of engineered retargeting of a retroviral vector exist. The engineered SL3-AP envelope is capable of utilizing either the murine Xpr1 or the human APJ receptor for entry. In addition, SL3-AP is the first example of an engineered retrovirus retaining its dual tropism after several rounds of passaging on cells expressing only one of its receptors. We demonstrate that the virus evolves toward reduced ligand-receptor affinity, which sheds new light on virus adaptation. We provide indirect evidence that such reduced affinity leads to reduced receptor internalization and propose a novel model in which too rapid receptor internalization may decrease virus entry.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3