Local Character of Readthrough Activation in Adenovirus Type 5 Early Region 1 Transcription Control

Author:

Shen Li1,Spector David J.12

Affiliation:

1. Department of Microbiology and Immunology and Inter-College Graduate Degree Program in Genetics

2. Program in Cell and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033

Abstract

ABSTRACT Wild-type early activity of the adenovirus 5 E1b gene promoter requires readthrough transcription originating from the adjacent upstream E1a gene. This unusual mode of viral transcription activation was identified by genetic manipulation of the mouse β maj -globin gene transcription termination sequence ( GGT ) inserted into the E1a gene. To facilitate further study of the mechanism of readthrough activation, the activities of GGT and a composite termination sequence CT were tested in recombinant adenoviruses containing luciferase reporters driven by the E1b promoter. There was a strict correlation between readthrough and substantial downstream gene expression, indicating that interference with downstream transcription was not a unique property of GGT . Blockage of readthrough transcription of E1a had no apparent effect on early expression of the major late promoter, the next active promoter downstream of E1b. A test for epistatic interaction between termination sequence insertions and E1a enhancer mutations suggested that readthrough activation and E1a enhancer activation of the E1b promoter are mechanistically distinct. In addition, substitution of the human cytomegalovirus major immediate-early promoter for the E1b promoter suppressed the requirement for readthrough. These results suggest that readthrough activation is a “local” effect of a direct interaction between the invading transcription elongation complex and the E1b promoter. DNase I hypersensitivity footprinting provided evidence that this interaction altered an extensive E1b promoter DNA-protein complex that was assembled in the absence of readthrough transcription.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3