Loss of the Response Regulator CtrA Causes Pleiotropic Effects on Gene Expression but Does Not Affect Growth Phase Regulation in Rhodobacter capsulatus

Author:

Mercer Ryan G.1,Callister Stephen J.2,Lipton Mary S.2,Pasa-Tolic Ljiljana3,Strnad Hynek4,Paces Vaclav4,Beatty J. Thomas5,Lang Andrew S.1

Affiliation:

1. Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada

2. Biological Sciences Division

3. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352

4. Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14220 Prague 4, Czech Republic

5. Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada

Abstract

ABSTRACT The purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus has been extensively studied for its metabolic versatility as well as for production of a gene transfer agent called RcGTA. Production of RcGTA is highest in the stationary phase of growth and requires the response regulator protein CtrA. The CtrA protein in Caulobacter crescentus has been thoroughly studied for its role as an essential, master regulator of the cell cycle. Although the CtrA protein in R. capsulatus shares a high degree of sequence similarity with the C. crescentus protein, it is nonessential and clearly plays a different role in this bacterium. We have used transcriptomic and proteomic analyses of wild-type and ctrA mutant cultures to identify the genes dysregulated by the loss of CtrA in R. capsulatus . We have also characterized gene expression differences between the logarithmic and stationary phases of growth. Loss of CtrA has pleiotropic effects, with dysregulation of expression of ∼6% of genes in the R. capsulatus genome. This includes all flagellar motility genes and a number of other putative regulatory proteins but does not appear to include any genes involved in the cell cycle. Quantitative proteomic data supported 88% of the CtrA transcriptome results. Phylogenetic analysis of CtrA sequences supports the hypothesis of an ancestral ctrA gene within the alphaproteobacteria, with subsequent diversification of function in the major alphaproteobacterial lineages.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3